Sunday, February 17, 2013

Bailey's Industrial Oil and Fat Products, 6 Volume Set, 6th Edition, By Fereidoon Shahidi

Bailey's Industrial Oil and Fat Products, 6 Volume Set, 6th Edition, By Fereidoon Shahidi, ISBN: 978-0-471-38460-1, Hardcover, 3616 pages, April 2005, 24.78 MB, RAR

First published in 1945, Bailey's has become the standard reference on the food chemistry and processing technology related to edible oils and the nonedible byproducts derived from oils. This sixth edition features new coverage of edible fats and oils and is enhanced by a second volume on oils and oilseeds. This sixth edition consists of six volumes: five volumes on edible oils and fats, with still one volume (as in the fifth edition) devoted to nonedible products from oils and fats. Some brand new topics in the sixth edition include: fungal and algal oils, conjugated linoleic acid, coco butter, phytosterols, and plant biotechnology as related to oil production. Now with 75 accessible chapters, each volume contains a self-contained index for that particular volume.
Tables of Contents:
1. Chemistry of Fatty Acids (Charlie Scrimgeour).
2. Crystallization of Fats and Oils (Serpil Metin and Richard W. Hartel).
3. Polymorphism in Fats and Oils (Kiyotaka Sato and Satoru Ueno).
4. Fat Crystal Networks (Geoffrey G. Rye, Jerrold W. Litwinenko, and Alejandro G. Marangoni).
5. Animal Fats (Michael J. Haas).
6. Vegetable Oils (Frank D. Gunstone).
7. Lipid Oxidation: Theoretical Aspects (K. M. Schaich).
8. Lipid Oxidation: Measurement Methods (Fereidoon Shahidi and Ying Zhong).
9. Flavor Components of Fats and Oils (Chi-Tang Ho and Fereidoon Shahidi).
10. Flavor and Sensory Aspects (Linda J. Malcolmson).
11. Antioxidants: Science, Technology, and Applications (P. K. J. P. D. Wanasundara and F. Shahidi).
12. Antioxidants: Regulatory Status (Fereidoon Shahidi and Ying Zhong).
13. Toxicity and Safety of Fats and Oils (David D. Kitts).
14. Quality Assurance of Fats and Oils (Fereidoon Shahidi).
15. Dietary Lipids and Health (Bruce A. Watkins, Yong Li, Bernhard Hennig, and Michal Toborek).
1. Butter (David Hettinga).
2. Canola Oil (R. Przybylski, T. Mag, N.A.M. Eskin, and B.E. McDonald).
3. Coconut Oil (Elias C. Canapi, Yvonne T. V. Agustin, Evangekube A. Moro, Economico Pedrosa, Jr., Mar&─▒acute;a J. Bendaño).
4. Corn Oil (Robert A. Moreau).
5. Cottonseed Oil (Richard D. O’Brien, Lynn A. Jones, C. Clay King, Phillip J. Wakelyn, and Peter J. Wan).
6. Flax Oil and High Linolenic Oils (Roman Przybylski).
7. Olive Oil (David Firestone).
8. Palm Oil (Yusof Basiron).
9. Peanut Oil (Harold E. Pattee).
10. Rice Bran Oil (Frank T. Orthoefer).
11. Safflower Oil (Joseph Smith).
12. Sesame Oil (Lucy Sun Hwang).
13. Soybean Oil (Earl G. Hammond, Lawrence A. Johnson, Caiping Su, Tong Wang, and Pamela J. White).
14. Sunflower Oil (Maria A. Grompone).
1. Conjugated Linoleic Acid Oils (Rakesh Kapoor, Martin Reaney, and Neil D. Westcott).
2. Diacylglycerols (Brent D. Flickinger and Noboru Matsuo).
3. Citrus Oils and Essences (Fereidoon Shahidi and Ying Zhong).
4. Gamma Linolenic Acid Oils (Rakesh Kapoor and Harikumar Nair).
5. Oils from Microorganisms (James P. Wynn and Colin Ratledge).
6. Transgenic Oils (Thomas A. McKeon).
7. Tree Nut Oils (Fereidoon Shahidi and Homan Miraliakbari).
8. Germ Oils from Different Sources (Nurhan Turgut Dunford).
9. Oils from Herbs, Spices, and Fruit Seeds (Liangli (Lucy) Yu, John W. Parry, and Kequan Zhou).
10. Marine Mammal Oils (Fereidoon Shahidi and Ying Zhong).
11. Fish Oils (R. G. Ackman).
12. Minor Components of Fats and Oils (Afaf Kamal-Eldin).
13. Lecithins (Bernard F. Szuhaj).
14. Lipid Emulsions (D. Julian McClements and Jochen Weiss).
15. Dietary Fat Substitutes (S. P. J. Namal Senanayake and Fereidoon Shahidi).
16. Structural Effects on Absorption, Metabolism, and Health Effects of Lipids (Armand B. Christophe).
17. Modification of Fats and Oils via Chemical and Enzymatic Methods (S. P. J. Namal Senanayake and Fereidoon Shahidi).
18. Novel Separation Techniques for Isolation and Purification of Fatty Acids and Oil By-Products (Udaya N. Wanasundara, P. K. J. P. D. Wanasundara, and Fereidoon Shahidi).
1. Frying Oils (Monoj K. Gupta).
2. Margarines and Spreads (Michael M. Chrysan).
3. Shortenings: Science and Technology (Douglas J. Metzroth).
4. Shortenings: Types and Formulations (Richard D. O’Brien).
5. Confectionery Lipids (Vijai K.S. Shukla).
6. Cooking Oils, Salad Oils, and Dressings (Steven E. Hill and R. G. Krishnamurthy).
7. Fats and Oils in Bakery Products (Clyde E. Stauffer).
8. Emulsifiers for the Food Industry (Clyde E. Stauffer).
9. Frying of Foods and Snack Food Production (Monoj K. Gupta).
10. Fats and Oils in Feedstuffs and Pet Foods (Edmund E. Lusas and Mian N. Riaz).
11. By-Product Utilization (M. D. Pickard).
12. Environmental Impact and Waste Management (Michael J. Boyer).
1. A Primer on Oils Processing Technology (Dan Anderson).
2. Oil Extraction (Timothy G. Kemper).
3. Recovery of Oils and Fats from Oilseeds and Fatty Materials (Maurice A. Williams).
4. Storage, Handling, and Transport of Oils and Fats (Gary R. List, Tong Wang, and Vijai K.S. Shukla).
5. Packaging (Vance Caudill).
6. Adsorptive Separation of Oils (A. Proctor and D. D. Brooks).
7. Bleaching (Dennis R. Taylor).
8. Deodorization (W. De Greyt and M. Kellens).
9. Hydrogenation: Processing Technologies (Walter E. Farr).
10. Supercritical Technologies for Further Processing of Edible Oils (Feral Temelli and Özlem Güçlü-Üstünda&gcaron;).
11. Membrane Processing of Fats and Oils (Lan Lin and S. Sefa Koseoglu).
12. Margarine Processing Plants and Equipment (Klaus A. Alexandersen).
13. Extrusion Processing of Oilseed Meals for Food and Feed Production (Mian N. Riaz).
1. Fatty Acids and Derivatives from Coconut Oil (Gregorio C. Gervajio).
2. Rendering (Anthony P. Bimbo).
3. Soaps (Michael R. Burke).
4. Detergents and Detergency (Jesse L. Lynn, Jr.).
5. Glycerine (Keith Schroeder).
6. Vegetable Oils as Biodiesel (M. J. T. Reaney, P. B. Hertz, and W. W. McCalley).
7. Vegetable Oils as Lubricants, Hydraulic Fluids, and Inks (Sevim Z. Erhan).
8. Vegetable Oils in Production of Polymers and Plastics (Suresh S. Narine and Xiaohua Kong).
9. Paints, Varnishes, and Related Products (K. F. Lin).
10. Leather and Textile Uses of Fats and Oils (Paul Kronick and Y.K. Kamath).
11. Edible Films and Coatings from Soybean and Other Protein Sources (Navam S. Hettiarachchy and S. Eswaranandam).
12. Pharmaceutical and Cosmetic Use of Lipids (Ernesto Hernandez).
Cumulative Index.
Download Link:
                                                 Uploaded  (32.79MB)
If  you need a hard copy of it:

Thursday, January 3, 2013

Model Based Control: Case Studies in Process Engineering, By: Arpad Imre-Lucaci, Mircea Vasile Cristea, P.S.Agashi, and Zoltan K.Nagy

Model Based Control: Case Studies in Process Engineering, By: Arpad Imre-Lucaci, Mircea Vasile Cristea, P.S.Agashi, and Zoltan K.Nagy. November 10, 2006 3527315454 978-3527315451 1

Filling a gap in the literature for a practical approach to the topic, this book is unique in including a whole section of case studies presenting a wide range of applications from polymerization reactors and bioreactors, to distillation column and complex fluid catalytic cracking units. A section of general tuning guidelines of MPC is also present. These thus aid readers in facilitating the implementation of MPC in process engineering and automation. At the same time many theoretical, computational and implementation aspects of model-based control are explained, with a look at both linear and nonlinear model predictive control. Each chapter presents details related to the modeling of the process as well as the implementation of different model-based control approaches, and there is also a discussion of both the dynamic behavior and the economics of industrial processes and plants. The book is unique in the broad coverage of different model based control strategies and in the variety of applications presented. A special merit of the book is in the included library of dynamic models of several industrially relevant processes, which can be used by both the industrial and academic community to study and implement advanced control strategies.

About Authors:

Professor Paul Serban Agachi graduated 1970 in Control Engineering at the Politehnica University of Bucharest and obtained his Ph.D. in Chemical Engineering from the University for Petroleum & Gas in Ploiesti, Romania. His professional experience ranges from design engineer and system analyst in process control design to researcher in fuel cells, process modeling, optimization and control, and also professor of process control at the Department of Chemical Engineering of Babes-Bolyai University, Cluj-Napoca. He was visiting associate at California Institute of Technology, invited professor at E?tv?s Lorand University, UNESCO Higher Education consultant, member of the Academy of Technical Sciences of Romania, chair of CAPE Forum 2005, and co-chair of ESCAPE 17. He has published 7 books and 85 scientific papers.

Zoltan K. Nagy received his M.S. and Ph.D. degrees in chemical engineering from Babes-Bolyai University of Cluj-Napoca in 1995 and 2001, respectively, where is currently working. Between 1999 and 2005 he was research associate and visiting lecturer in different international research teams, e.g., at ETH Z?rich, the University of Heidelberg, the University of Stuttgart, and the University of Illinois at Urbana-Champaign. He worked on industrial implementation of model-based control strategies with companies such as BASF and ABB, and has published over 60 papers in the field.
Cristea Vasile Mircea graduated the Faculty of Electrotechnics, Romania, with specialization on process control and computer science and holds a Ph.D. degree in process control. After 8 years spent in industry he is at present Associate Professor at Babes-Bolyai University, Cluj-Napoca; his interests lie in systems theory, chemical process control, advanced process control, data acquisition and control, linear and nonlinear model based predictive control, and fuzzy control. He was director of CNCSIS Projects and has published 3 books as well as over 55 scientific papers.
Arpad Imre-Lucaci received his M.S. and Ph.D. degrees in chemical engineering from Babes-Bolyai University of Cluj-Napoca in 1985 and 1999, respectively. Since 1988 he has worked in the Chemical Engineering Department of BBU Cluj-Napoca, Romania, and spent research stays at University of Stuttgart (1994) and ETH Zurich (in 2002 and 2003). His main research fields are mathematical modeling, simulation and optimization in process industries, on which he has published over 20 scientific papers.

Download Link:
                                                       Dropbox  (5.06 MB)